FORMING RESERVED OUTPUT SIGNAL OF AN ATOMIC CLOCK ENSEMBLE

K. Mishagin, I. Chernyshev, V. Soloviov, S. Podogova

«Vremya-CH», Nizhny Novgorod, Russia
Motivation

Modern atomic clock ensemble etalons are required to produce continuous output signal
✓ long continuous measurements
✓ critical applications: communication with space stations, etc.

Requirements to reserving system:

✓ Failure of certain atomic clock must not lead to phase/frequency jumps of the output signal
✓ Designed system is desired to be full-automatic
✓ It is attractive to get physical signal possessing frequency stability of ensemble weighted average
Standard approach to output signal reserving
Standard approach to output signal reserving

Disadvantages:

• Long time for input signal analysis and commutation
• Unavoidable phase/frequency shift during commutation
• System complexity
Alternative approach

Scheme for output signal reserving in atomic clock ensemble

- CLOCK-1, CLOCK-2, CLOCK-3, ..., CLOCK-n
- $f_1, f_2, f_3, \ldots, f_n$
- Δ$f_{1,i}, \Delta f_{2,i}, \Delta f_{3,i}, \ldots$
- Multi-channel phase (frequency) comparator
- Processor
- DAC
- Voltage controlled quartz oscillator 5 MHz
- Former of output signals
- 1 PPS synch.
- 5, 10, 100 MHz, 1 Hz

Real-time atomic clock combiner VCH-317
Advantages:

- Fast detection and program detaching of failure signal
- No phase/frequency shifts due to attaching/detaching input signals
- Can be realized in one device and reserved additionally
- Frequency stability of output signal can be improved (it can be better than the stability of the best reference standard)
PID-control algorithm for frequency stabilization

\[DAC_{n+1} = DAC_n + \Delta - k^i y_n - k^p (y_n - y_{n-1}) - k^d (y_n - 2y_{n-1} + y_{n-2}) \]

\[y_n = \frac{1}{\tau} (x_n - x_{n-1}) \quad - \quad \text{relative frequency difference} \]

\[\Delta \quad - \quad \text{programmed frequency offset} \quad \text{Loop sample time } \tau = 10 \text{ ms} \]

\[k^i, k^p, k^d \text{ are optimized} \quad \text{Introduced phase noise and AVAR are minimized} \]

Output frequency calculation

\[f_{out} = \delta + \nu t + \sum_{n=1}^{N} w^n_N f_n \]
Frequency instability introduced by the system

No temperature stab. in the room
No shifts in phase and frequency after adding/removing reference signal
Optimal weights selection problem

\[f_{out} = \sum_{n=1}^{N} w_n f_n \]

\[w_i(\tau) = \frac{\sigma_i^{-2}(\tau)}{\sum_{k=1}^{N} \sigma_k^{-2}(\tau)} \]

\[\sigma_{out}^2 = \sum_{i=1}^{N} w_i^2 \sigma_i^2 + \sigma_{317}^2 \rightarrow \min \]

Output signal frequency instability is minimized for single averaging time only!

Possible solutions:
1) Virtual atomic time scale + control of auxiliary oscillator
2) Multi-scale control
One-time-scale control algorithm:

\[\Delta U_k = - \sum_{n=1}^{N} w_{n}^{S} y_{n}^{S} \]

Two-time-scale control algorithm:

\[\Delta U_k = - \sum_{n=1}^{N} w_{n}^{S} \left(y_{n}^{S} - \sum_{m=1}^{N} w_{m}^{L} \left(y_{n}^{L} - y_{m}^{L} \right) \right) \]

Addition long averaging time estimation of frequency differences is required
\[\Delta U_k = -\sum_{n=1}^{N} w^S_n \left(y^S_n - \sum_{m=1}^{N} w^L_m (y^L_n - y^L_m) \right) \]

Weights estimation for two-scale frequency control:

Short time:
\[w^S_n = \frac{\sigma_n^{-2}(\tau^S)}{\sum_{k=1}^{N} \sigma_k^{-2}(\tau^S)} \]

Long time:
\[w^L_n = \frac{\sigma_n^{-2}(\tau^L)}{\sum_{k=1}^{N} \sigma_k^{-2}(\tau^L)} \]

Estimation of frequency stability of reference signals is needed.
Modeling

Two types of reference signals: $4 + 4$

$\tau^S = 1$ sec
$\tau^L = 20000$ sec
Results of modeling. Dynamics of weights

\[w_n^S = \frac{\sigma_n^{-2}(\tau^S)}{N} \sum_{k=1}^{\tilde{\tau}^S} \sigma_k^{-2}(\tau^S) \]

\[w_n^L = \frac{\sigma_n^{-2}(\tau^L)}{N} \sum_{k=1}^{\tilde{\tau}^S} \sigma_k^{-2}(\tau^L) \]
Two-scale frequency control

Results of modeling
Atomic clock combiner system seems to be effective for output signal reserving (fast detection and exclusion of invalid reference signals, no phase/frequency jumps)

Simple modification of the algorithm allows to obtain output signal frequency stability better than the best input signal has for all τ.
THANK YOU FOR YOUR ATTENTION!

WELCOME TO THE POSTER SECTION

S. Podogova, K. Mishagin
CALIBRATION OF FREQUENCY STANDARD WITH THE USE OF GLONASS/GPS RECEIVER: ALGORITHMS COMPARISON AND EXPERIMENT

K. Mishagin, I. Chernyshev, A. Belyaev, S. Medvedev, P. Smirnov
ACCURACY ANALYSIS OF THREE-CORNERED HAT METHOD REALIZED IN DIGITAL FREQUENCY COMPARATOR

I. Chernyshev, K. Mishagin
ALLAN VARIANCE ESTIMATION IMPROVEMENT IN A MULTI-CHANNEL COMPARATOR