Active Hydrogen Maser VCH-2021

vremya-ch.com/index.php/en/products-en/activehm-en/vch-2021-en/index.html

VCH-2021 is the first successful realization of hydrogen maser with a single state

selection system. It demonstrates absolutely record frequency stability for active H-masers.

Best technologies including internal stand-alone Cavity Auto Tuning system are inherited from the previous model VCH-1003M.

New option: optical output with wavelengths 1310 nm and 1550 nm.

Key Applications:

- National Time Keeping Service.
- Deep space tracking and navigation.
- VLBI systems.
- GNSS satellite monitoring.

Factory test results

Polyakov V., Timofeev Y. and Demidov N., "Frequency Stability Improvement of an Active Hydrogen Maser with a Single-State Selection System," 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), 2021, pp. 1-4, doi: 10.1109/EFTF/IFCS52194.2021.9604270.

Specifications

Output signals:

- sine: 5 MHz; 10 MHz, 100 MHz, 1±0.2 V RMS into 50 Ohms;

– pulse: 1 Hz, Amplitude: >2.5 V into 50 Ohms, width: (15 \pm 5) μ s.

Rise time <2ns, positive polarity;

– optical: wavelengths 1310 nm and 1550 nm, modulated by 100 MHz and 1 Hz signals, respectively; power of optical radiation (0.1-1) mW.

Metrological characteristics are given in the table:

Averaging time, τ						
	Standard	Option L				
	3 Hz measuring bandwidth	0.5 Hz measuring bandwidth	3 Hz measuring bandwidth			
1 s	1.0·10 ⁻¹³	5.0·10 ⁻¹⁴	7.0·10 ⁻¹⁴			

Frequency stability (Allan deviation) 5 MHz, 10 MHz, 100 MHz

10 s	1.5·10 ⁻¹⁴	0.9·10 ⁻¹⁴	1.0 [.] 10 ⁻¹⁴
100 s	3.0·10 ⁻¹⁵	2.5·10 ⁻¹⁵	2.5·10 ⁻¹⁵
1000 s	1.0·10 ⁻¹⁵ *	1.0·10 ⁻¹⁵ *	1.0 [.] 10 ⁻¹⁵ *
1 hour	8.0·10 ⁻¹⁶ *	8.0·10 ⁻¹⁶ *	8.0 [.] 10 ⁻¹⁶ *
1 day	1.0·10 ⁻¹⁶ * (typical value 8.0·10 ⁻¹⁷)	1.0·10 ⁻¹⁶ * (typical value 8.0·10 ⁻¹⁷)	1.0 [.] 10 ⁻¹⁶ * (typical value 8.0 [.] 10 ⁻¹⁷)

* Specified only under laboratory conditions: ambient temperature in the range ±0.1 °C, changing rate <0.3 °C/hour. ADEV at 1 day is specified for measurements with removed linear frequency drift

Frequency drift is no more $2.0 \cdot 10^{-15}$ per day at release and no more $3.0 \cdot 10^{-16}$ per day after 1 year of continuous operation.

Temperature sensitivity: $\leq 1.5 \cdot 10^{-15} / °C$.

Magnetic sensitivity: $\leq 5 \cdot 10^{-15}$ /Gauss.

Frequency trim range: 1.10⁻¹⁰.

Frequency setting resolution: 10^{-16} . Manual synchronization to external 1 PPS TTL signal in the range: ±15 ns.

Phase noise (SSB Phase Noise, dBc/Hz):

	Standard			Option L		
Offset from carrier	5 MHz	10 MHz	100 MHz	5 MHz	10 MHz	100 MHz
1 Hz	≤−118	≤−112	≤-92	≤−130	≤−121	≤−100
10 Hz	≤−135	≤−129	≤-109	≤−148	≤−135	≤−115
100 Hz	≤−149	≤−143	≤−122	≤−151	≤−145	≤−125
1 kHz	≤−156	≤−149	≤−122	≤−158	≤−150	≤−130
10 kHz	≤−158	≤−153	≤−153	≤−158	≤−153	≤−153
100 kHz	≤−158	≤−153	≤−153	≤−158	≤−153	≤−153

Harmonic distortion: ≤−40 dBc (for 5 MHz output).

Non-harmonic distortion: <-100 dBc in the range from 10 Hz to 10 kHz.

Full data monitoring and functions control. Application software running under Microsoft Windows and Linux.

Operating temperature range: 10...30 °C. Storage temperature range: -30...50 °C. Power supply: AC($85\div264$)V, ($49\div51$)Hz; DC($24\div27$)V. Power consumption: 150 V·A (AC), 100 W (DC). Weight: <115 kg. Weight in shipping container: <200 kg. Dimensions (W×H×D): $445\times950\times625$ mm. Warranty: 3 years (7 years extended). Lifetime: 15 years.